Improved Arabic Dialect Classification with Social Media Data
نویسنده
چکیده
Arabic dialect classification has been an important and challenging problem for Arabic language processing, especially for social media text analysis and machine translation. In this paper we propose an approach to improving Arabic dialect classification with semi-supervised learning: multiple classifiers are trained with weakly supervised, strongly supervised, and unsupervised data. Their combination yields significant and consistent improvement on two different test sets. The dialect classification accuracy is improved by 5% over the strongly supervised classifier and 20% over the weakly supervised classifier. Furthermore, when applying the improved dialect classifier to build a Modern Standard Arabic (MSA) language model (LM), the new model size is reduced by 70% while the English-Arabic translation quality is improved by 0.6 BLEU point.
منابع مشابه
The Status of [h] and [ʔ] in the Sistani Dialect of Miyankangi
The purpose of this article is to determine the phonemic status of [h] and [ʔ] in the Sistani dialect of Miyankangi. Auditory tests applied to the relevant data show that [ʔ] occurs mainly in word-initial position, where it stands in free variation with Ø. The only place where [h] is heard is in Arabic and Persian loanwords, and only in the pronunciation of some speakers who are educated and/or...
متن کاملGender Inference for Arabic Language in Social Media
The widespread usage of social media has attracted a new group of researchers seeking information on who, what and, where the users are. Some of the information retrieval researchers are interested in identifying the gender, age group, and the educational level of the users. The objective of this work is to identify the gender in the Arabic posts in the social media. Most of the works related t...
متن کاملBorrowing the Verb “ast” and Its Varieties in Arabic Dialect of Sarab
“Borrowing” is a lingual process that is studied in diachronic linguistics. In this process a language borrows elements from another language. This process usually occurs in areas that two languages make contact with each other. In a dialect spoken in South Khorasan the language borrowing happens. Arabs living in this part of Iran probably have immigrated in the early centuries of Islam. In thi...
متن کاملFinding Romanized Arabic Dialect in Code-Mixed Tweets
Recent computational work on Arabic dialect identification has focused primarily on building and annotating corpora written in Arabic script. Arabic dialects however also appear written in Roman script, especially in social media. This paper describes our recent work developing tweet corpora and a token-level classifier that identifies a romanized Arabic dialect and distinguishes it from French...
متن کاملTransliteration of Arabizi into Arabic Orthography: Developing a Parallel Annotated Arabizi-Arabic Script SMS/Chat Corpus
This paper describes the process of creating a novel resource, a parallel Arabizi-Arabic script corpus of SMS/Chat data. The language used in social media expresses many differences from other written genres: its vocabulary is informal with intentional deviations from standard orthography such as repeated letters for emphasis; typos and nonstandard abbreviations are common; and nonlinguistic co...
متن کامل